
Database History

A tale of two papers

Its Me!

Doug Turnbull

@softwaredoug

Search & Big Data Architect
OpenSource Connections
http://o19s.com
Charlottesville VA, USA

http://o19s.com/

Outline

• A Relational Model of Data for Large Shared
Data Banks -- Edgar F. Codd

• Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web
Services -- Eric A. Brewer

Why?

RDMS NoSQL

Declarative Procedural

Mathematical
Precision

Computational
Precision

Data

Purity
Computational
Transparency

“A foolish consistency is the hobgoblin of little
minds” – Emerson

See the wisdom in both paths

Let’s make a database!

Username,Address,Videos Rented
andy
...
don,...
doug,1234 bagby st,"Top Gun,Terminator,The Matrix"
...

rick,9212 frontwell ave,“Godfather Part I,Top Gun”
ryan,
...

Index:
...
doug:offset 512
...
rick:offset 9212
...

Each line is a record

Where to find each users
data in the file

Make each movie a record?

Username,Address,Videos Rented
…
doug,1234 bagby st,
...
rick,9212 frontwell ave

Movie Name,Price,NumInStock
Top Gun,$1.99,5
…

Index:
...
doug:offset 512
...
rick:offset 9212
...
top gun:offset 15000

Store movie records the same way?

Index movie records

How do I store the videos
a user has rented?

???

Aggregate them with the user record?

Network Databases

• Early databases (Codasyl/DBTG)

– Record based

• Either hierarchical or navigational

– Navigational: Records own other records by
means of a “set” construct

• How might this look in our example?

Codasyl/DBTG

• Early databases, weak abstraction over a file

Record Name is USER
 Location Mode is CALC Using username
 Duplicates are not allowed
 username Type character 25
 address Type character 50
 phonenumber Type character 10

Record Name is VIDEO

Basic Unit “Record” Records own other records
via sets

Set Name is USER-VIDEOS
 ORDER is NEXT
 RETENTION is MANDATORY
 Owner is USER
 Member is VIDEO

Users -> Videos

Username,Address,Videos Rented SET
…
doug,1234 bagby st,<Top Gun,Terminator,The Matrix>

Movie Name,Price,NumInStock
Top Gun,$1.99,5
…

Index:
...
doug:offset 512
...
top gun:offset 15123

Set inline with data?

User -> Video SET
Doug,Top Gun,Terminator,The Matrix

doug_videos:offset 17582

Or Set as its own record?

Querying for Videos

MOVE ‘Doug’ to USERNAME
FIND Any User USING USERNAME
FIND First VIDEO WITHIN User.Videos
DO WHILE (dbstatus=0)
 GET VIDEO
 PRINT (VIDEO)
 FIND NEXT VDEO WITHIN User.Videos

Summing Up

• Built from the bottom up

• Makes me think of:

User

Video

public class User {
 private Video[] videos;

}

Is this ownership (aggregation)?
Or is this just an association with a
video owned by another object?

Codd’s Criticisms

• Application is heavily dependent on storage
constraints

– Bottom Up

• Access Path dependencies (which record do I access
first? Users before videos? Who owns what?)

• Order Dependencies (set order is defined at index time,
iterations occur over that order)

• Indexing Dependencies (indexes referenced by name)

• Changing these things breaks applications!

Codd

A tuple is a sufficient abstraction to represent a relation

(Doug, 1234 Bagby St, <Top Gun, 3.99, Terminator, 12.99>)

We can introduce “Normalization”

Users
(Doug, 1234 Bagby St)

Rented Videos
(Doug, Top Gun, 3.99)
(Doug, Terminator, 12.99)

We can reason about data with mathematical certainty

RDMS Features

• Codd defines a set of operations

• Most importantly the JOIN

– Create any derived relation from a stored relation

Checking Codd’s Criticisms

• Access Dependencies – all data is normalized
into a structure optimal for asking any
question

• Order Dependencies – relations do not
guarantee any order (though the query
language can specify a sort)

• Indexing Dependencies – We don’t need to
refer to the index when querying (its just a
bonus)

Stop thinking about the file

Username,Address,Videos Rented
…
doug,1234 bagby st,
...
rick,9212 frontwell ave

Movie Name,Price,NumInStock
Top Gun,$1.99,5
…

Index:
...
doug:offset 512
...
rick:offset 9212
...
top gun:offset 15000

Start thinking about Normalized
Relations!

Users
(Doug, 1234 Bagby St, <Top Gun, 3.99, Terminator, 12.99>)

Rented Videos
(Doug, Top Gun)
(Doug, Terminator)

Videos
(Top Gun, 3.99)
(Terminator, 12.99)

Retrospective?

• How do NoSQL databases do with these
issues? Access Dependencies, Indexing
Dependencies, Order Dependencies?

– Is it even a fair criticism?

– Why is it ok in NoSQL but not in SQL (is it ok?)?

– ???

Fast Forward to early 2000s

• SQL Databases have “won”; Codd’s vision
thriving

• We can always scale with beefing up our
hardware – “Vertical Scalability”

• Single system PoV

Trouble Ahead

“The Free Lunch is Over!” – Herb Sutter
The Free Lunch Is Over
A Fundamental Turn Toward Concurrency in Software • Per HD size plateuing

• Hard Drive throughput
plateauing

Trouble Ahead

• Instead of scaling vertically, we need to find
ways to scale horizontally

– “Elastic” scalability, add more systems to get more
performance

– Scaling horizontally (more less performant servers)
than vertical horizontally

How do we design databases to take advantage of the scale, and grow

The Problem

• How do we design databases to take
advantage of horizontal scalability?

• Are the traditional RDMS databases up to this
task?

Enter Brewer’s CAP Theorem

• The CAP Theorem, introduced in Brewer’s
Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services

CAP Theorem Explained

• In the presence of a partition system must
chose between being consistent or available

Consistent
- Will not respond
to request until
consistency can
be guaranteed.

Available
- Will respond to
request, even if
consistency
cannot be
guaranteed

CAP Theorem

• In other words, in the case of horizontal
scalability, (i.e., potential partitions) what do
we do when servers can’t communicate?

– Block? (wait till we can confirm consistency)

– Respond? (we can figure this all out later)

CAP Theorem in Human Organizations

• You receive an order from a customer over the
phone do you:

– Wait until the boss has signed off and reconciled
with the rest of the orders?

• Maybe blocking all your colleagues as your boss takes
time to respond?

– Or do you just respond saying “yes!” knowing
maybe this customer is impatient (or maybe
maintaining consistent inventory isn’t important)

What does this mean for databases?

CA

CP AP

SQL, Codasyl, a big file,
(basically the history of
 databases to this point)

??? ???

What does this mean for databases?

CA

CP AP

SQL, Codasyl, a big file,
(basically the history of
 databases to this point)

Respond quickly to
guarantee the sale?

When implementing a
partitionable database, choose
between consistency and
availability

Partition == Decision

Call the boss before
completing the order?

What else does this mean?

• Database designers must chose to focus on
either consistent applications or available
applications

• Thus… much of NoSQL is born
– Big focus: options for more AP systems

• Available and Partitioned

• Bottom line:
– Choices choices choices, what corner of the

triangle are you on?

What else does this mean?

• Many NoSQL databases end-up being
designed bottom-up for horizontal scalability

– Simpler, lower level APIS (set, get, put)

– Hierarchical Schemas

– Sometimes distributed based on order?

Controversial Question of the Day

• Have we come full circle?

• Or are we just responding to the technical
challenges of the CAP theorem?

• Answers? (questions ok too)

