Processing a Trillion Cells per Mouse Click

NoSQL Matters 2013

Alex Hall, Google Zurich
Olaf Bachmann, Robert Buessow, Silviu Ganceanu, Marc Nunkesser
Outline of the Talk

• Background: AdSpam team at Google
 Why we care about interactive data analysis

• PowerDrill UI: internal web-app to slice & dice data

• High-level properties of PD Serving
 scaling from millions to billions of records

• Main part: key ingredients, comparison to other backends, algorithmic engineering “tricks”
AdSpam: Interactive Data Analysis

AdSpam team provides online filters to catch “invalid clicks”

Typical analyses:

• Manually check set of suspicious clicks
• Slice and dice the data, look at various metrics

Goals:

• Review: quickly decide whether clicks are invalid
• Filter development: research new filter ideas
PowerDrill UI

Google internal web-app for easy slicing and dicing

• Shows charts e.g., clicks over time, top ten countries, ...
• Interactive way of restricting the data set
PowerDrill UI

Each chart -> SQL “GROUP BY” query
Restriction -> WHERE statement

On every interaction
• Send SQL queries to the backend
 Dremel, RecordIO, CSV, PD Serving, ...
• Backend processes SQL on suspicious click data

Needs to be super fast on billions of records!

PD Serving’s goal:
 scale from 100s of millions to 10s of billions
“Google Crunches One Trillion Pieces of Data With Single Click”

Appeared on www.wired.com/wiredenterprise/2012/08/google-trillion-pieces-of-data/

Contains nice summary of this VLDB article

“Dremel is designed to analyze many different datasets,” says Tomer Shiran, […], “but this new system is optimized to run in memory, and that means you can achieve really, really low latency.” […]

“If you have, say, four datasets that are central to your business,” Shiran says, “this is where you would store them.” The system uses various compression techniques, he says, to pack as much data as possible into memory.

Thoughts:
• Obviously, Google cares about more than four datasets
 Dremel: disk based, petabytes of data, millions of tables
• OTOH, AdSpam analyses: mostly with two huge (logs) datasets
Reality

• Heavily used within AdSpam since 2 years.
 Single user after a “hard day’s work”: up to 12k queries
• Used primarily on 2 major datasets
• Typically a single mouse click triggers 20 SQL queries
• **On average** these queries process data corresponding to **782 billion cells**
 i.e., frequently > 1 trillion cells
• Return in **30-40 seconds** (under 2 seconds per query)
Remainder of the Talk

• Data and queries for **experiments**
• Comparing **existing backends** (latency, mem)
• How to speed this up? Observations
 - Indexed data vs. full scans, caches
• **New approach**, key ingredients
 - Get the best of both: indexes and full scans
 - Improve cache hits
• **Optimizations / algorithmic engineering “tricks”**
 Stepwise discussion of effects of optimizations
Data for Experiments

Our UI is used Google-wide, millions of SQL queries processed over the last half year

-> 5 mio records of own PD query logs for experiments 😊
 country, city, office, user,
 table_name [includes Dremel queries -> millions of tables],
 latency, time_stamp

Experiments

• Ran on 2.6 GHz, 8GB RAM Linux machine
• 5 repetitions per query
• Disk-caches flushed between queries
• Measured avg latency and memory usage
Example SQL Queries

Q1: top 10 countries
(users in 25 countries)
```
SELECT country, COUNT(*) as c
FROM pd_logs
GROUP BY country
ORDER BY c DESC LIMIT 10;
```

Q2: # of SQL queries, latency per day
```
SELECT date(time_stamp) as date,
    COUNT(*) as c, SUM(latency)
FROM pd_logs
GROUP BY date
ORDER BY date ASC;
```

Q3: top 10 table-names from Ireland
```
SELECT table_name, COUNT(*) as c, SUM(latency)
FROM pd_logs
WHERE country = 'IE'
GROUP BY table_name
ORDER BY c DESC LIMIT 10;
```

Q4: top 10 table-names overall (w/o latency)
Comparing Existing Backends

• **CSV files** (comma separated values)

 Compute stats by iterating over a csv-file; scan whole file line-by-line

• **RecordIO files**

 Google binary “record” file-format; scan whole file record-by-record

• **Dremel**

 – High performance Google internal column store
 – Columnwise storage: full scan of data, but only necessary columns

<table>
<thead>
<tr>
<th></th>
<th>Latency in milliseconds</th>
<th>Memory in KB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>CSV</td>
<td>55,099</td>
<td>75,207</td>
</tr>
<tr>
<td>RecordIO</td>
<td>27,134</td>
<td>50,587</td>
</tr>
<tr>
<td>Dremel</td>
<td>7,874</td>
<td>18,191</td>
</tr>
</tbody>
</table>
Observations

- Columnwise full scans are very fast! Cache locality, good to opt...
- Would be nice to skip data though ...

Index?
- Fixed set of fields (only for certain WHERE restrictions)
- Expensive to evaluate compared to full scan
 DBs like SQL Server do full scans if more that 10% of data touched

Caches?
- Insufficient because too much variance on the queries
Best of Both: Index vs. Full Scans

- **Partition the data during import** (composite range partitioning)
- **Add “index” per chunk**: per field a list of occurring values
- -> **WHERE restricts chunks, fast columnwise scan per chunk**

![Diagram showing data partitioning and index creation](image-url)
Best of Both: Index vs. Full Scans

- Partition the data during import (composite range partitioning)
- Add “index” per chunk: per field a list of occurring values

WHERE restricts chunks, fast columnwise scan per chunk

SELECT ...
WHERE country = ‘IE’
Improve Cache Hits

- Cache result per chunk
- “Normalize” WHERE statement per chunk, e.g.,
Chunk contains only country = ‘IE’ -> remove WHERE
Outline of Experiments

Stepwise check individual improvements
Measure latency & memory usage

• Basic system
 – No partitioning, no index, no caches
 – Data structures / format optimized for GROUP BY and IN restrictions

• Partition: Split data into chunks, add index

• Further optimizations / “tricks” to reduce memory usage
 Goal: serve as much from memory as possible
Basic System

- **No** partitioning, **no** index, **no** caches
- Columnwise storage, per field store:
 - **Dictionary**: occurring values \leftrightarrow int “ids”
 - Represent the actual data as list of such ids

<table>
<thead>
<tr>
<th></th>
<th>Latency in milliseconds</th>
<th>Memory in KB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Dremel</td>
<td>7,874</td>
<td>18,191</td>
</tr>
<tr>
<td>Basic</td>
<td>20</td>
<td>214</td>
</tr>
</tbody>
</table>

- **Q1 Top countries**
 - \rightarrow 5 mio times counts[countryId]++
- **Q2 Count & latency / day**
 - pre-computed date(..)
- **Q3 Top tables**
 - WHERE restriction
 - many values / ids
- **Q4 Top tables**
 - no WHERE
 - many values / ids
Partition the Data and Add Index

- Split data into chunks (simple composite range partitioning)
- Add index (i.e., list of occurring int ids) to each chunk
Reduce Memory Footprint

Goal: billions of rows in memory
Optimized Storage of int ids

• Until now: store ids as 4 byte ints.

• Low hanging fruit: select optimized storage per chunk
 – 1 id (2, 2, 2, ... for “US”, “US”, “US”, ...) -> O(1) storage
 – 2 ids (0, 2, 2, ... for “DE”, “US”, “US”, ...) -> Bitset
 – < 2^8, < 2^16, < 2^32 ids resp. -> 1, 2, 4 bytes/id

Memory usage of int ids in KB

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>20,001</td>
<td>40,726</td>
<td>64,934</td>
<td>24,209</td>
</tr>
<tr>
<td>Chunks</td>
<td>20,072</td>
<td>47,259</td>
<td>51,426</td>
<td>24,293</td>
</tr>
<tr>
<td>Index</td>
<td>20,072</td>
<td>47,259</td>
<td>2,060</td>
<td>24,293</td>
</tr>
<tr>
<td>OptCols</td>
<td>83</td>
<td>22,259</td>
<td>1,266</td>
<td>14,292</td>
</tr>
</tbody>
</table>

Only 25 countries. Many chunks with just one / two countries

WHERE restricts # chunks read

Top tables. Many ids
Optimized **int ids** – Latency & Memory

- Latency basically unchanged
- A lot less memory for fields with few ids
- Gains not as large for fields with many ids (large dictionaries!)

<table>
<thead>
<tr>
<th></th>
<th>Latency in milliseconds</th>
<th>Memory in KB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Dremel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,874</td>
<td>18,191</td>
</tr>
<tr>
<td>Basic</td>
<td>20</td>
<td>214</td>
</tr>
<tr>
<td>Chunks</td>
<td>31</td>
<td>231</td>
</tr>
<tr>
<td>Index</td>
<td>19</td>
<td>226</td>
</tr>
<tr>
<td>OptCols</td>
<td>20</td>
<td>297</td>
</tr>
</tbody>
</table>

Only 25 countries. Many chunks with just one / two countries

Top tables. Many values / ids
Optimized Dictionaries

- Dictionaries can be large, e.g., verbatim all table-names
- Sorted, often long common prefixes!
- Optimized Trie (heavy on bit manipulations on single byte)
- Each node corresponds to a “nibble” (4 bits)
- Lookup in both directions (2 -> “US” and “IE” -> 1)

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>0</td>
<td>727</td>
<td>67,748</td>
<td>67,023</td>
</tr>
<tr>
<td>Chunks</td>
<td>0</td>
<td>727</td>
<td>67,748</td>
<td>67,023</td>
</tr>
<tr>
<td>Index</td>
<td>0</td>
<td>727</td>
<td>67,748</td>
<td>67,023</td>
</tr>
<tr>
<td>OptCols</td>
<td>0</td>
<td>725</td>
<td>4,090</td>
<td>3,365</td>
</tr>
<tr>
<td>OptMaps</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Many ids / string values with shared prefixes. Common case in practice

Only 25 countries
Optimized Dictionaries - Overall

- Latency more or less the same
- Huge improvement for fields with many ids
- Optimized, in-memory data structures: 5x smaller than Dremel’s compressed version.

<table>
<thead>
<tr>
<th></th>
<th>Latency in milliseconds</th>
<th>Memory in KB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Dremel</td>
<td>7,874</td>
<td>18,191</td>
</tr>
<tr>
<td>Basic</td>
<td>20</td>
<td>214</td>
</tr>
<tr>
<td>Chunks</td>
<td>31</td>
<td>231</td>
</tr>
<tr>
<td>Index</td>
<td>19</td>
<td>226</td>
</tr>
<tr>
<td>OptCols</td>
<td>20</td>
<td>297</td>
</tr>
<tr>
<td>OptMaps</td>
<td>17</td>
<td>373</td>
</tr>
</tbody>
</table>
Compressed – **Snappy**

- To squeeze more into the RAM, how about compressing?
- Google’s own fast **Snappy** algorithm
- Focus on Q4 -- the many int ids / values case

<table>
<thead>
<tr>
<th></th>
<th>Memory in KB</th>
<th>Compressed Memory in KB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chunks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OptCols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OptMaps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Partitioning makes a difference (chunks have “similar” values)
- Almost as if a wall is hit at 12MB with “byte-level techniques”

Note: Huffman coding techniques go further (“bit-level”)
Snappy & Reordering

Snappy
• Additional 29% – 49% saving in compression
• About 2x worse latency!

-> Hybrid: two in-memory layers (compr. vs. not compr.)
 treat uncompressed with cache heuristic (e.g., LRU)

Reordering of rows to help compression
• Additional saving of up to 64% for int ids after compression
<table>
<thead>
<tr>
<th>Step</th>
<th>Savings (per step)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic (compared to Dremel)</td>
<td>-11% – 34%</td>
</tr>
<tr>
<td>Chunks (partitioning)</td>
<td>-16% – 0%</td>
</tr>
<tr>
<td>Optimized storage of int ids</td>
<td>11% – 99.5%</td>
</tr>
<tr>
<td>Optimized dictionaries (trie)</td>
<td>0% – 78%</td>
</tr>
<tr>
<td>Snappy</td>
<td>29% – 49%</td>
</tr>
<tr>
<td>Reorder</td>
<td>16% – 55%</td>
</tr>
</tbody>
</table>
Summary

• Latency
 Reduced from 7-48 seconds to 7-260 milliseconds

• Memory
 From 27, 60, 90 MB down to 35KB, 12MB, 5.6MB

• In production, on average
 – 30-40 seconds for about 20 queries
 – 92.41% of records skipped
 5.02% served from cached results
 2.66% scanned
 – 70% of queries fetch no data from disk,
 96.5% less than 1GB (overall)